

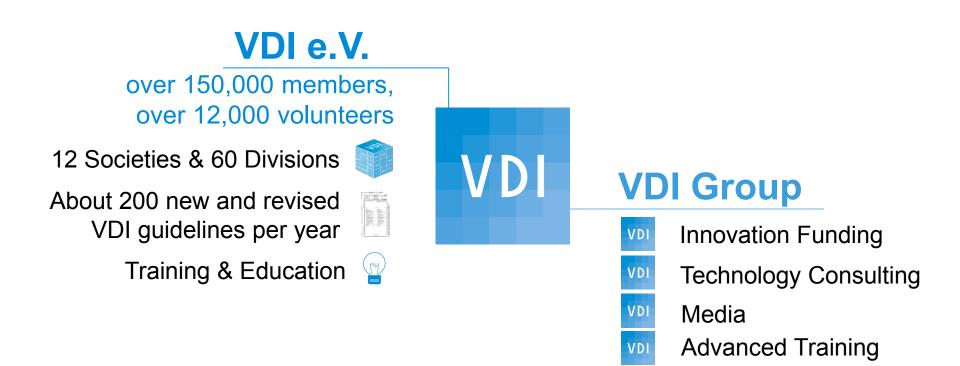
Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit

Raw Material Challenges for SMEs

© Ansgar van Treeck

Maximilian Müller VDI Centre for Resource Efficiency (VDI ZRE)

Madrid, 14 February 2019


Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit

Zentrum Ressourceneffizienz

VD

The Association of German Engineers (VDI)

Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit

Zentrum Ressourceneffizienz

VDI

VDI Centre for Resource Efficiency (VDI ZRE)

- Project on behalf of the Federal Minister for the Environment, Nature Conservation and Nuclear Safety (BMU), funded by the National Climate Fund
- Focus on Resource Efficiency in operational practice through connection to VDI
- Competence Centre for demand-driven preparation of technical knowledge on Resource Efficiency in SMEs
- Development of standards through VDI guidelines for RE in cooperation with VDI

© VDI ZRE © VDI Zentrum Ressourceneffizienz GmbH

Zentrum Ressourceneffizienz

VDI

- SMEs identify resource efficiency as increasingly important
 However, most potentials are not released yet
- However, most potentials are not released yet
 Further implementation of resource efficiency measures in practice, with

Copyright: VDI Centre for Resource Efficiency (VDI ZRE), 2015: Studie Status quo Ressourceneffizienz; www.ressource-deutschland.de/publikationen/studien

© VDI Zentrum Ressourceneffizienz GmbH

percentage of total;

 $n_{uq} = 1.007$

special focus on SMEs

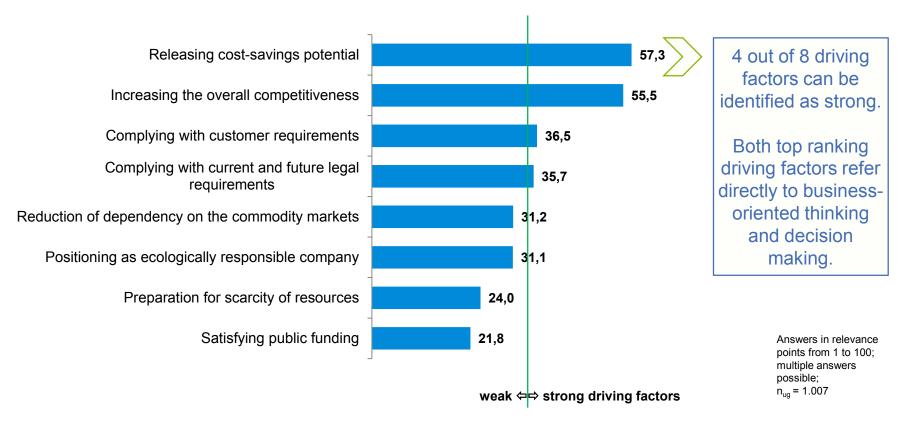
Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit

Zentrum Ressourceneffizienz

VD

Barriers for Implementing Resource Efficiency

Source: VDI Centre for Resource Efficiency (VDI ZRE), 2015: Studie Status quo Ressourceneffizienz; www.ressource-deutschland.de/publikationen/studien


Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit

Zentrum Ressourceneffizienz

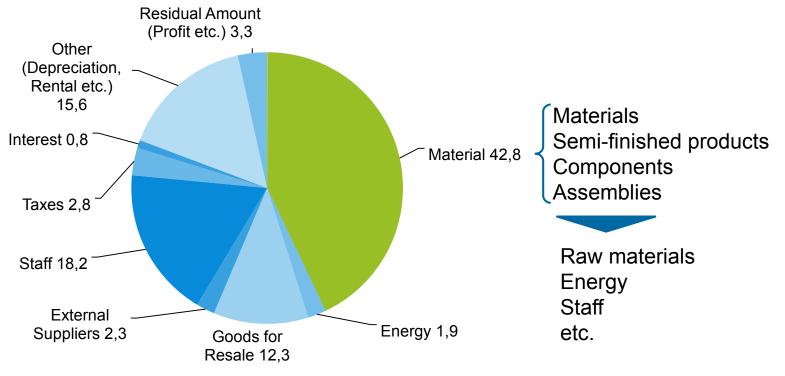
VDI

Driving Factors for Resource Efficiency

Source: VDI Centre for Resource Efficiency (VDI ZRE), 2015: Studie Status quo Ressourceneffizienz; www.ressource-deutschland.de/publikationen/studien

© VDI Zentrum Ressourceneffizienz GmbH

www.vdi-zre.de


Page 6/16 | Conference Madrid | 14 February 2019

Business perspective on Resource Efficiency

Cost Structure in Manufacturing Industries

Gross production value = 100%

VDI

Zentrum

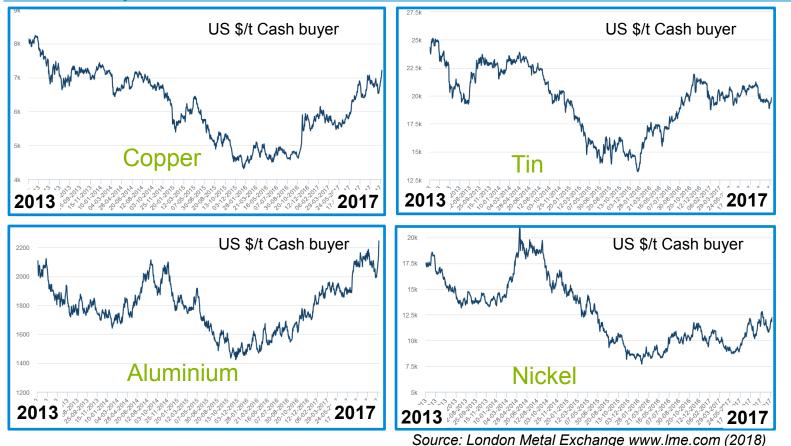
Ressourceneffizienz

Source: Statistisches Bundesamt (2016) Zahlen für das Jahr 2015

© VDI Zentrum Ressourceneffizienz GmbH

www.vdi-zre.de

Page 7/16 | Conference Madrid | 14 February 2019


Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit

Zentrum Ressourceneffizienz

VDI

Development of Selected Raw Material Prices

© VDI Zentrum Ressourceneffizienz GmbH

www.vdi-zre.de

Page 9/16 | Conference Madrid | 14 February 2019

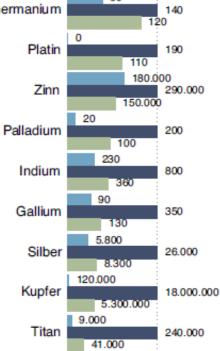
Demand for future technologies 2013 / t 60 Germanium 0 Platin Zinn 110.000 20 Palladium 100 230 Indium 360

Im Auftrag des:

Bundesministerium

und nukleare Sicherheit

Raw Materials for Future Technologies


Production 2013 / t Demand for future technologies 2035 / t Bar length standardised to the annual production in 2013 610 Lithium 30.000 2.000 HSE (Dysprosium/Terbium) 2.400 7.400 50 Rhenium 50 120 29,000 Gallium LSE (Neodym/Praseodym) 37.000 64.000 500 Silber Tantal 1.300 2.100 Kupfer Scandium 9 5.000 Titan Kobalt 130.000 120.000

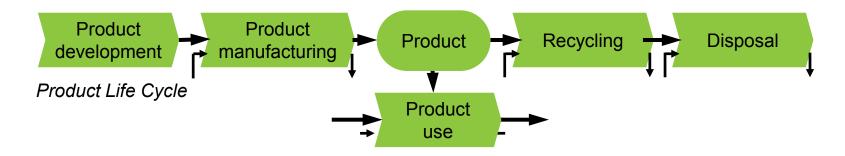
Source: DERA-Studie Rohstoffe für Zukunftstechnologien/ Fraunhofer-Institut für System- und Innovationsforschung ISI (2016)

VDI

© VDI Zentrum Ressourceneffizienz GmbH

www.vdi-zre.de

Im Auftrag des:


Zentrum Ressourceneffizienz

VD

Strategies to Increase Resource Efficiency

Resource Efficiency Analysis

Consideration of the whole Product Life Cycle

The digital transformation bears considerable potential for resource efficiency in the whole product life cycle.

Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit

Case Studies: Resource Efficiency 4.0

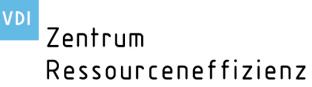
One Piece Flow (Manufacturing)

Foam Packaging (Product Design)

© VDI ZRE

Smart Iron Foundry (Manufacturing)

Compressed Air Leakage App (Production Infrastructure)



Case Studies: Resource Efficiency 4.0

RESOURCE GERMANY.TV	Savings of 25.000 kg PE Foam per year	Savings of ■ 85.000 kg CO2eq per year	Savings of 123.000 kg CO2eq per year
 Savings of 2.526 kg EPDM foam per year 233 kg aluminium profile per year Total of 16.000 kg CO2eq per year 	 7.000 kg CO2eq per year 	 243.600 kWh of electricity per year € 45.800 energy costs per year 	 231.000 kWh of electricity per year € 35.000 energy costs per year
One Piece Flow (Manufacturing)	Foam Packaging (Product Design)	Smart Iron Foundry (Manufacturing)	Compressed Air Leakage App (Production Infrastructure)

Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit

European Resource Efficiency Knowledge Center

#EREK #ResourceEfficiency

Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit

VDI

© VDI Zentrum Ressourceneffizienz GmbH

www.vdi-zre.de

Page 14/16 | Conference Madrid | 14 February 2019

Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit

Tools and Good Practice Examples

© VDI Zentrum Ressourceneffizienz GmbH

www.vdi-zre.de

Maximilian Müller

VDI Zentrum Ressourceneffizienz GmbH Bertolt-Brecht-Platz 3 D-10117 Berlin

+49 30 2759506-29 mueller_ma@vdi.de

www.resource-germany.com

Im Auftrag des:

Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit

